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Overview

Perturbative calculations are still needed and/or useful in XXI century
QFT at finite T and pu.

Remarkable and amusing general property of Feynman /oop graphs in
thermal field theories, undiscovered until recently:
“TThermal part” can be simply related to “vacuum part”.

Result is valid for a general field theory involving scalar, fermionic and
gauge fields.

Result holds in both Euclidean Time and Real Time (closed time path)
formalisms.

Result can be extended to non-zero chemical potential.

Warning: this is a talk about the formalism of thermal QFT
No new physics here! (sorry)
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(Some) previous related work...

e M. Gaudin (Nuovo Cimento, 1965)
In French

e R. Pisarski (NPB, 1983),
Computing finite temperature loops with ease

Abstract. An efficient way of calculating perturbatively at non-zero temperature is to
start with a diagram in momentum space, and then Fourier transform each
propagator in a loop with respect to the (imaginary) time. Discontinuities are read off
from the energy denominators of this non-covariant approach.

e F. Guerin (PRD, 1994),
Rules for diagrams in thermal field theories

Abstract. Sets of rules are proposed that allow one to write down the amplitude
associated with a diagram at temperature T once the energy running around each loop
has been summed over, in the imaginary-time formalism. Alternative forms are given:
one is based on tree diagrams, another one on possible intermediate states. A close
analogy to the T=0 case is obtained. The amplitude’s analytic structure is explicit. A
factorization property is found for the N-point imaginary-time Green functions.



A sample diagram in QED or g¢3

(P P) (P P) /
4

Diagram = / [loop spatial momenta k;] ‘" (po, E;)

1
YT (po, E;) = T* Z H m

loop Matsubara 1
frequencies w

e
N

1=1,2,...,1 = total number of internal lines

B = (k2 +m?)

w; = linear combination of pg and wj

w; = (27T)n;, mn; = integer



Main result

) (po, Ei) = O (BN (po, By)

where

dk
() _ ol _ .
(po, Ei) = / | | = _|_ 52 T = 0 energy loop integral

and

I
OMN(E) =] +n(1-5)) Thermal Operator
1=1
defined in terms of

> n; = npp(E;) = (ef/T — 1)_1 Bosonic thermal occupation factor

> Sif(....E;,..)=f(..,—E;,...) Reflection operator



Explicit simple example (g&3 theory)

(po—ﬂ)n,p—k)
Py P) : ::
(w,, k) Ei = (k2+m2>1/2’ B, = ((p—k)2+m2>1/2
1+ n1+no niy — no niy — no 1+ n1+no
¥ (po, Br, B2) = - + -

ipo+ b1+ E> ipo+ E1—FE>  ipo— E1+ E>  ipo— E1— B>

— O(T)(Ela EQ)’Y(O) (p07 El) EQ)
where
1 1

(0) _
7 (p07E17E2) - . -
oo+ E1+ E>  ipo— E1 — E>

and

O(Er, E2) = (1 +n1 (1 —51)) (14 n2 (1 - 52))
=14n1(1-51)+n2(1—-5)4+nmn(l—-51)1—25%)



Explicit simple example (g¢3 theory) (continued)

Note that

0

1 1
1—51)(1—59)vO(po, E1, E2) = (1 —51) (1 -8 [ — ]
( 1) ( 2)7 (po, E1, E2) = ( 1) ( 2) o+ F1+ B> ipo— Fr — I

So,
T (po, E1, E2) = [1 4+ n1 (1 — S1) + n2 (1 — 52)]7 9 (po, E1, E»)



Generalization

The Thermal Operator can also be written as:

I
O"N(E) =1+) n(E)1-8)+ Z/n(Eil)n(Eiz)(l - 8i,)(1 = 8;,)

i=1 (11,i2)

L
4+ Z
(

1 n(EZ-l)(l — S@l)

/
il,...,iL> =1

where
e the indices i1,ip,... run from 1 to I.
e (i1,...,1x) represents a given set of k£ internal lines.
° Z’ means that those tuples (i1,...,i) that are cut sets of the diagram must be

excluded.



Generalization

The Thermal Operator can also be written as:

I
O"N(E) =1+) n(E)1-8)+ Z/n(Eil)n(Eiz)(l - 8i,)(1 = 8;,)

1=1 <i1,i2>

L
4+ Z
(

1 n(EZ-l)(l — S@l)

/
il,...,iL> =1

where
e the indices i1,ip,... run from 1 to I.
e (i1,...,1x) represents a given set of k£ internal lines.
° Z’ means that those tuples (i1,...,i) that are cut sets of the diagram must be
excluded.

For instance, for the diagram

2 5

1 4 O has no terms with nins or nans.



The Thermal Operator

Properties of O (E;):
e it is real and linear
e it is (effectively) of degree L in the n;'s [in the Euclidean formalism]
e it is independent of the external energies po = {po1,po2,---}
e it is different for each diagram

e it is an idempotent operator: O (E)OD(E;) = OT(E;)



Proof

> Use of Gaudin’'s method to perform Matsubara sums (J.P.Blaizot+Reinosa
hep-ph/0406109, O.E. hep-ph/0501273))

> Use of mixed time-momentum representation
(F.Brandt+A.Das+O.E.+J.Frenkel+4S.Perez, hep-th/0508067)

Zero temperature

A0 E) = [ T2 A o, E)
T

1

= 7 [Q(T)G_ET + 9(—7’)6ET] , —00 < T < 00

Finite temperature

AN EY=T > e ™ A0 (po, E)

n——oo

1
= o2 [0 {1 +n(B) e "7 + n(E)e™}

+6(—71) {n(E)e_ET + (1 +n(F)) eET}] ,—% <T< %



Proof (continued)

It holds that
AD (1, E) =[14+n(E)(1 - S(E)] AO(r,E)

= 0T (EYAO (1, E)
Basic (bosonic) thermal operator
Then

e O(E) is independent of the time variable +

e Thus, O)(E) can be taken out of finite temperature loop integrals
(which contain integrations over internal times over the ranges
0<7<1/T)

e It can be shown that the integration ranges can then be extended to
—o0o < 7 < oo (thermal operator annihilates added parts)



Real-time (closed time path) formalism

Matrix valued propagators

AT (p) = A1) + 27n(|po))s (p2 — m?), a,b=+,—
Mixed time-momentum representation

s > dpo —q s
AW =8B = [ T2 AG.p)

Same basic (bosonic) thermal operator

AN E) =1+ n((EBE)(1 - SE)] AL E)
= 0D(E)AY (¢, E)

e OU(E) is the same for all propagator components ab

e Same proof as in the Euclidean formalism, but simpler:

e NO need to extend the ranges of internal t-integrations
(—oc0 <t < oo in both cases)



Extension to fermions

For a fermionic line:

ONE) = 14+npe(E)(1 — S(E)) = OY(E) = 1-npp(E)(1 — S(E))

(diagonal in spin space)
Fermionic propagator at finite temperature
T —» T 0 5
SG(t,p) = 05 (B)SS) (¢, 9)
Fermionic propagator at zero temperature
S(O) (t —») [9(t>A(E)€_7(E 75)7‘_'_9( t)B(E)ey(E 75)1‘}
0) (4 = — i iEt
Syt p) = QEB(E)G
SO t,5) = —EA(E)e—fEf
SO (t,p) = ﬁ [0(t) B(E)" FH 4+ o(—t) A(E)e ()]

where

AB)=~4°E -7 -p4+m, B(E)=-E-7-5+m



Non-zero chemical potential

Zero temperature (scalar case, Euclidean formalism):
1
(po —ip ) + E?
A(T=0,u)(7.7 E) = emA(T=0,u=0)(7.j E)
1

R —(E—p)T _ (E4p)T
== [9(7)6 W7 L g(—7)eEtn ]

A= (po, E) =

Finite temperature and chemical potential
1
ATH(r, ) = Y [9(7') {(1 +n_)e T 4 n+e(E"'“)T}

6o {4 1 oY

where
ne =n(FE + pn)



Non-zero chemical potential (continued)

Introduce a modified T'= 0, u = 0 propagator (Inui+Kohyama-+Niegawa,
hep-ph/0601092),

_ 1
ACO(r B B B )= -7 [0(T)e T 4+ 0(—7)e"7]

Then:
AW (r B)y = A0 (r E EL E.)
E.—FE+u
= S(u)ACO(r,E, By, E_)
and
AT (1 B) = S(u) [1 4+ N1 — R(E))| A (r, B, E4,E-)
= 0T (EYACO (+ E EL E.)
where

R(E)f(E,E+) = f(—E,—E%)
Nf(Ea E:I:) — TL(E:]:)f(E, E:l:)
S(Wf(E,Ex) = f(E,E+p)

Extension to fermions: hep-th/0601224 and 227, PRD (2006)



Outlook

But is it useful?
For instance: retarded self-energy Nr(w,p) = —MNg(i(w + ic), p)

ImMgr(w,p) ~ decay rate of particle propagating in the thermal medium
IM A~ (i(w + ie), EB) = O (E) Im A (i(w + ie), E)

(reproduces Weldon's rules [1983])
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Other “applications” ? Please let me know!



